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LETTER TO THE EDITOR 

Hysteresis in model spin systems 
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Department of Physics, Indian Institute of Science, Bangalore-560 012, India 

Received 2 May 1989, in final form 3 August 1989 

Abstract. We study the hysteretic response of model spin systems to periodic time-varying 
fields H(t)  as a function of the amplitude H o  and the frequency 52. At fixed H o ,  we find 
conventional, squarish hysteresis loops at low 52, and rounded, roughly elliptical loops at 
high Q, in agreement with experiment. For the O(N+ a), d = 3, model with Langevin 
dynamics, we find a novel scaling behaviour for the areaA of the hysteresis loop, of the form 
(valid for low fields) A = H i  66 52" j3. 

Problems in the kinetics of the first-order phase transitions have been studied extensively 
over the past few decades. In particular, there have been many studies of the early stages 
[l] (nucleation and spinodal decomposition) and late stages [2] of domain growth, after 
a quench from a one-phase regime to a regime where two or more phases coexist in 
equilibrium. By contrast, there have been hardly any studies of hysteresis [3,4], the 
most commonly observed manifestation of non-equilibrium behaviour in the vicinity of 
a first-order phase boundary. In this Letter we initiate a systematic study of hysteresis 
in model spin systems. 

We seek the response of a spin system to a time-varying magnetic field H(t)  = 
H o  sin(S2t). In the limit S2 + 0, we expect the magnetisation M to exhibit a discontinuity 
at H = 0 given by M = M,, sgn(H), where Me,  is the equilibrium value of M as H+ 0-t. 
In the limit S2 -+ CQ, the spin system cannot respond to the rapidly varying magnetic field, 
so we expect M ( t )  = Mi,, for all time, where Mi, is the initial value of the magnetisation 
of the spin system. One question of interest is: how does the discontinuity in M at H = 
0 as S2 -+ 0 evolve into M ( t )  = Mi, as S2 -+ a? The answer to this question requires a 
systematic study of the dependence of the shape and area of the hysteresis loop (a plot 
of M versus H )  on the frequency S2 and the amplitude Ho. We are aware of very few 
detailed experimental studies of the shapes of hysteresis loops over wide ranges of the 
frequency [4,5]. However, especially for ferrites [ 5 ] ,  there are extensive data on the 
frequency- and amplitude-dependence of the areas of hysteresis loops and the attendant 
power losses. To the best of our knowledge, our work is the first statistical-mechanical 
attempt to explain these data. Other theories of hysteresis, either in magnets [5,6] or 
bistable systems [3], do not account for spatial fluctuations of the order parameter as we 
do. 

Our principal results are for an O(N+ x), d = 3, (@2)2 model with Langevin 
dynamics, which does not conserve any order parameter [7]: 

(i) For fixed Ho and varying S2,  the hysteresis loops show five qualitatively different 
asymptotic (t+ E) shapes (figure l), which interpolate naturally between the S2 -+ 0 
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Figure 1. (a)-(e)  Typical examples of the five qualitatively different hysteresis loops, and (f) 
the regionsin the H,,-Qplane where theyareobtained, forthe O(n + 30) model (cfequations 
(1)-(3)) withr  = -10. (a)  R = 0.01, (6) Q = 0.05, (c) B = 0.5, (d) Q = 1.2, (e) R = 10. 

and S2 + cc behaviours discussed above. The frequency ranges in which these five shapes 
obtain depend on Ho: in the Ho-R plane we plot a stability diagram (figure l(f)) which 
shows the regions 1, 2, 3, 4 and 5 where the five shapes are obtained asymptotically. 
(The criteria used for determining the boundaries between these regions are given 
below .) 

(ii) In regions 1 , 2  and 3 of figure l(f), the areaA of the hysteresis loop exhibits the 
following simple scaling behaviour: A = HgRfi, where CY = 0.66 k 0.05 and p = 
0.33 f 0.03 (see figure 2 ) .  The exponents CY and /3 are found to be independent of 
temperature. The scale of H o  is set by the molecular field; that of R by the inverse of a 
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Figure 2. A scaling plot which demon- 
strates that the areaA of the hystereis loop 
scales as A = H i 6 6 Q 0 3 3 .  0, R = 0.01; +, 
R = 0.1; 0, R = 0.05; A ,  Q = 0.0; x ,  
Q = 0.2; V, R = 0.01; the values of H o  
are such that all points in this figure lie in 
regions 1,2,  or 3 or figure l(f);  r = -10. 

Figure3. Aplot of the ratio R = lh?(3R)i/ifi(R)~ 
versus the amplitude Ho. f i ( w )  is the Fourier 
transform of M ( t ) ;  r = -10. 
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microscopic relaxation time (see below). The power-law dependence on Ho is in quali- 
tative agreement with the well known experimental result called Steinmetz's law (where, 
however, LY = 1.6) [ 5 , 6 ] .  

(iii) In region 5 ,  a simple analytical treatment yields the elliptical loop of figure l ( e ) ;  
the area A = HiQ- '  as Q --., CQ, with H o  fixed. 

(iv) The shape of the hysteresis loop can be characterised partially by studying the 
harmonic content of M ( w ) ,  the Fourier transform of M ( t ) .  We find, in agreement with 
experiment, that, in regions 1,  2 and 3 ,  M(w) has only the fundamental and its odd 
harmonics. In figure 3 we plot the ratio R = IA?(3Q)//lk(Q)l against Ho. R gives an 
estimate of the distortion of the loop (compared to an elliptical loop); thus, it is small in 
region 5 and increases monotonically as we go from region 5 to region 1 in figure l(f). 
The saturation of R at large values of H ,  (figure 3 )  is in qualitative agreement with 
experiments on real magnets [ 5 ] .  Details of our results on the response of the above spin 
model to magnetic-field pulses, the correlation of these results with those summarised 
in figure 1, and the time-dependence of the transverse correlation function will be 
published elsewhere [8]. 

We also have results for the two-dimensional Ising ferromagnet with Monte Carlo 
dynamics [9 ,  lo] .  These are not as extensive [lo] as those for the O ( N )  model described 
above, but show an evolution of hysteresis-loop shapes similar to the evolution shown 
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in figure 1. However, region 4 is not well defined for the Ising model: the slow drift of 
the loop (figure l ( d ) )  cannot be resolved because of the fluctuations inherent in a Monte 
Carlo simulation [ 101. 

The O ( N )  model we study is specified by the Landau-Ginzburg free-energy func- 
tional 

/ j ’ F = / d ’ ~ ( i ( V @ ) ~  + i r ( @ 2 ) + _ f L ( @ 2 ) 2  - H . Q ,  
4N 

where /j’ = ( k B T ) - l ,  Y is proportional to ( T  - TMF), TMF being the mean-field critical 
temperature for the model (l), U is positive (henceforth U = 1), and the magnetic field 
H(t)  = H o  sin(Qt)6,,,, points along the a = 1 direction (henceforth the longitudinal 
direction). Qa(x,  t )  evolve according to the Langevin equation (a goes from 1 to n )  

a@&, t>/at = -rS(PF)/6Q,(x, t> + r&, 4 (2) 
where the coefficient r sets the scale of time, the noise q n ( x ,  t )  obeys Gaussian statistics: 

Equations (1) and (2) yield an infinite hierarchy of coupled equations for the 
cumulants of QJx, t ) .  In the limit N-+ =, this hierarchy of equations is truncated [ 7 ] ,  
so we only have to follow the time evolution of the magnetisation M ( t )  = (Ql(x, t ) )  and 
the transverse correlation function C,( Ix - yI, t )  = (QJx,  t)@.,(y, t ) ) ,  with a # 1. The 
contributions of the other correlation functions to the equations for M and C, and 
O(l/n), so they can be neglected in the limit N+ a. Also, as long as M ( t  = 0) is 
independent of x and C,(t = 0) depends only on Ix - y 1 ,  then M ( t )  remains independent 
of x and C,(t) depends only on Jx - y /  for all time. Thus, we have to solve the following 
coupled integro-differential equations [7]. 

( r&,  4 )  = 0 and (r&, t ) r p ( y ,  t l ) )  = =ZYpqx - Y) 6(t  - 4) .  

dM(t)/dt = i [ A ( t ) M ( t )  + H o  sin(!&)] 

d C, ( 4 ,  t ) / d t  = - [ q 2  - A ( t ) l C ,  (q , t> + 1 

M ( t  = 0) = M,, = V - ( r  - r c ) / u  

r ,  = -u/2n2 

S = (1/22) / q2C,(q,  t )  dq.  

( 3 a )  

(3b )  
with 

C,(q, t = 0 )  = Cleq = l /q2 
where A ( t )  = - (r  + UM2(t )  + u S ( t ) ) ,  the subscript eq stands for equilibrium and 

1 

0 

C,(q, t )  is the spatial Fourier transform of C,( Ix - y1, t ) ,  tis measured in units of (2r)-’, 
and the upper cut-off for q is taken to be 1. We solve (3a) and (3b) numerically: we 
evaluate the integrals by using either Simpson’s rule or Gaussian quadrature and we 
solve the differential equations by using Euler, Runge-Kutta, or Gear methods [11]. 
Thus we obtain M ( t )  and thence the hysteresis loop in the M-Hplane (figure 1). We use 
a fast-Fourier-transform method to obtain the Fourier transform M(w).  In this Letter 
we discuss only asymptotic loops (t+ x). 

As stated earlier we obtain five qualitatively different loops in the five different 
stability regions of the Ho-Q plane, as shown in figure 1. The boundaries separating the 
different regions of figure 1 should not be thought of as sharp boundaries; the changes 
in the shapes of the loops occur gradually. We have chosen the following criteria to 
determine the boundaries between the five regions given above. (i) In regions 1 and 2, 
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as we traverse the loop in the first quadrant of the M-H plane, d2M/dH2 changes sign 
(does not change sign) if the point (Q, H,) lies in region 1 (region 2) of figure l(f). (ii) 
Regions 2 and 3: in region 2 (region 3 )  M does not change sign (changes sign) as H ( t )  
passes through its maximum value H,. (iii) Regions 3 and 4: in region 3 (region 4), the 
lower value of M at H = 0 is negative (positive), after the field H has gone through 100 
cycles. (iv) Regions 4 and 5:  in region 4 (region 5 ) ,  the ratio [ M ( t  = 0) - M ( t  = t ) ] /  
M ( t  = 0 )  has a value greater than (less than) 0.01, where the ratio is evaluated at H = 0 
and t is the time required for 100 cycles of the field H .  The boundaries between the 
regions obey approximate power laws with the exponents dependent on the range of Ho 

In a mean-field approximation to (2) where one neglects all fluctuations, one would 
neglect (3b ) ,  set S = 0, and solve (3a) with A(t )  = -r + uM2. We have studied such an 
approximation in detail, and it also yields hysteresis loops whose shapes depend on 
the frequency Q; however, a marked frequency dependence appears only when the 
amplitude H ,  is comparable to or greater than the mean-field spinodal magnetic field. 
Thus, mean-field theory is completely inadequate for the description of the frequency 
dependence of hysteresis loops in real magnets: the amplitudes H o  that are accessible in 
laboratory magnets are many orders of magnitude lower than spinodal fields. 

To compare our results with those obtained experimentally for real magnets, we 
must specify the scales of Ho and t .  The scale of H ,  can be set by the molecular field [ 131, 
which is typically lo7 Oe. The scale of t is set by (2r)-l, which is a typical microscopic 
relaxation time, such as the spin-lattice relaxation time, = s [ 141, Thus the frequency 
dependence of the shapes of the hysteresis loops should be observable at easily accessible 
frequencies only if Ho is very small. While this has been noted [4], we are not aware of 
any experimental stability diagram such as the one we portray in figure l(f). 

It is well known that hysteretic behaviour in real magnets is determined by the 
dynamics of domains which are strongly affected by anisotropies, dipolar forces and 
defects. These effects are not included in our model studies. Hence our results may be 
of direct relevance only to small, monodomain magnets with very small anisotropies. A 
simple 1/N expansion is not suitable for the study of hysteresis if spin anisotropies are 
included, but simple decoupling approximations can be used, as we shall show elsewhere 

However, our results make it clear that there is much interesting physics in the 
phenomenon of hysteresis that is worthy of experimental and theoretical study. In 
particular, it would be of great interest to study the scaling behaviour (with Ho and 5 2 )  
of the area of hysteresis loops, to find out whether this scaling is universal, and, if so, 
what the possible universality classes are. 

We would like to thank D Dhar, C Jayaprakash, N Kumar, Y Marathe, M Phani, T V 
Ramakrishnan and S R Shenoy for various useful discussions. We would also like 
to thank the Council for Scientific and Industrial Research, the University Grants 
Commission, and the Department of Science and Technology (India) for support. 
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